Source code for onnxscript.values

# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
from __future__ import annotations

import dataclasses
import functools
import inspect
import logging
import types
import typing
from enum import IntFlag
from typing import (  # type: ignore[attr-defined]
    Any,
    Callable,
    ClassVar,
    Optional,
    Protocol,
    Sequence,
    _GenericAlias,
)

import onnx
import onnx.defs

from onnxscript import converter as converter_module
from onnxscript import irbuilder, sourceinfo, type_annotation
from onnxscript._internal import ast_utils, deprecation
from onnxscript.ir import _schemas

_ATTRIBUTE_TYPE_TO_PYTHON_TYPE = {
    onnx.defs.OpSchema.AttrType.FLOAT: float,
    onnx.defs.OpSchema.AttrType.INT: int,
    onnx.defs.OpSchema.AttrType.STRING: str,
    onnx.defs.OpSchema.AttrType.TENSOR: None,
    onnx.defs.OpSchema.AttrType.GRAPH: None,
    onnx.defs.OpSchema.AttrType.SPARSE_TENSOR: None,
    onnx.defs.OpSchema.AttrType.TYPE_PROTO: None,
    onnx.defs.OpSchema.AttrType.FLOATS: Sequence[float],
    onnx.defs.OpSchema.AttrType.INTS: Sequence[int],
    onnx.defs.OpSchema.AttrType.STRINGS: Sequence[str],
    onnx.defs.OpSchema.AttrType.TENSORS: None,
    onnx.defs.OpSchema.AttrType.GRAPHS: None,
    onnx.defs.OpSchema.AttrType.SPARSE_TENSORS: None,
    onnx.defs.OpSchema.AttrType.TYPE_PROTOS: None,
}

# A special value to indicate that the default value is not specified
_EmptyDefault = object()

logger = logging.getLogger(__name__)


[docs] class Opset: """Represents an ONNX Opset, which consists of a domain name, a version. It also contains a set of operations. This represents an Opset defined in the ONNX schema registry and the operations are retrieved from the ONNX schema registry. It also stores function definitions created for ops in the corresponding Opset. Only a single instance of Opset is created for a given (domain, version) pair. """ domain: str version: int cache: ClassVar[dict[tuple[type, str, int], Opset]] = {} def __new__(cls, domain: str, version: int): key = (cls, domain, version) existing = cls.cache.get(key) if existing: return existing instance = super().__new__(cls) instance.domain = domain # type: ignore[attr-defined] instance.version = version # type: ignore[attr-defined] instance.function_defs = {} # type: ignore[attr-defined] cls.cache[key] = instance return instance def __init__(self, domain: Optional[str] = None, version: Optional[int] = None): # Nothing to do. Object is initialized by __new__ pass def __repr__(self): return f"{self.__class__.__name__}({self.domain!r}, {self.version!r})" def __getitem__(self, opname): try: return onnx.defs.get_schema(opname, self.version, self.domain) except Exception: # pylint: disable=broad-except # TODO: more specific exception return None def __contains__(self, opname): try: onnx.defs.get_schema(opname, self.version, self.domain) except Exception: # pylint: disable=broad-except # TODO: more specific exception return False else: return True def __str__(self) -> str: return self.domain def __getattr__(self, attr: str): try: schema = onnx.defs.get_schema(attr, self.version, self.domain) return Op(self, attr, schema) except Exception as exc: raise AttributeError(f"Attribute {attr} not found.") from exc def add_function_def(self, fun): if fun.name in self.function_defs: logger.warning("%s: Already defined.", fun.name) self.function_defs[fun.name] = fun def _prepare_inputs(self, _: onnx.defs.OpSchema, *inputs): """Trims 'None' values from the end of the inputs list. This is used to support omitting optional inputs when no more required inputs follow to prepare a valid call against the Op. Used by the static opset code generator. """ # TODO: validate the op schema as 'None' values are removed? input_list = list(inputs) while input_list and input_list[-1] is None: input_list.pop() return input_list
# ONNX ops @dataclasses.dataclass(frozen=True) class ParamSchema: """A schema for a parameter of an Op or a OnnxFunction. Attributes: name: The name of the parameter. type: The type of the parameter. default: The default value of the parameter. required: Whether the input or attribute is required. For example, `Slice` has two optional inputs `axes` and `steps`. `SoftmaxCrossEntropyLoss` has an optional attribute `ignore_index`. is_input: Whether the parameter is an ONNX input. is_variadic_input: Whether the parameter, which has to be an INPUT, is variadic. """ name: str type: Any = None # Op input does not have a type, for now default: Any = _EmptyDefault required: bool = True is_input: bool = True is_variadic_input: bool = False def __str__(self) -> str: """Return a string representation of the parameter. E.g. "x: Input[INT64]" or "axis: Attribute[int] = 0" """ param_kind = "Input" if self.is_input else "Attribute" text = f"{self.name}: {param_kind}[{self.type}]" if self.default is not _EmptyDefault: text += f" = {self.default}" return text @property def is_attribute(self) -> bool: """Returns True if the parameter is an ONNX attribute.""" return not self.is_input def _get_attribute_value(attr_proto: onnx.AttributeProto) -> Any: """Get the default value of an ONNX attribute.""" if attr_proto.type == onnx.AttributeProto.UNDEFINED: return _EmptyDefault return onnx.helper.get_attribute_value(attr_proto) def _param_schemas_from_op_schema( op_schema: onnx.defs.OpSchema, ) -> tuple[ParamSchema, ...]: """Get the parameter schemas from an ONNX OpSchema.""" schemas = [] for input_ in op_schema.inputs: param_schema = ParamSchema( name=input_.name, is_input=True, required=(input_.option != onnx.defs.OpSchema.FormalParameterOption.Optional), is_variadic_input=( input_.option == onnx.defs.OpSchema.FormalParameterOption.Variadic ), ) schemas.append(param_schema) for attr_name, attribute in op_schema.attributes.items(): default_attr_proto = attribute.default_value param_schema = ParamSchema( name=attr_name, type=_ATTRIBUTE_TYPE_TO_PYTHON_TYPE[attribute.type], default=_get_attribute_value(default_attr_proto), is_input=False, required=attribute.required, ) schemas.append(param_schema) return tuple(schemas) def _param_schema_from_function_ir_input(input: irbuilder.IRVar): if type_annotation.is_optional(input.typeinfo): required = False else: required = True return ParamSchema(name=input.name, type=input.typeinfo, is_input=True, required=required) def _param_schema_from_function_ir_attr(attr: irbuilder.IRAttributeParameter): return ParamSchema( name=attr.name, type=_ATTRIBUTE_TYPE_TO_PYTHON_TYPE.get( onnx.defs.OpSchema.AttrType(attr.type) # type: ignore[call-arg] ), default=_EmptyDefault if attr.default_value is None else attr.default_value, is_input=False, required=not attr.has_default, ) def _param_schemas_from_function_ir( function_ir: irbuilder.IRFunction, ) -> tuple[ParamSchema, ...]: """Get the parameter schemas from a FunctionIR.""" schemas = [] # OnnxFunction supports interleaving inputs and attributes as arguments. # Preserve the original order for param_schemas. # NOTE the interleave ordering is only preserved at OnnxFunction/FunctionIR level. # ONNX OpSchema and FunctionProto does not support interleaving inputs and attributes. # This is by design. See more at https://github.com/microsoft/onnxscript/issues/771. for arg in function_ir.ordered_inputs_and_attrs: if isinstance(arg, irbuilder.IRVar): # input schemas.append(_param_schema_from_function_ir_input(arg)) elif isinstance(arg, irbuilder.IRAttributeParameter): # attr schemas.append(_param_schema_from_function_ir_attr(arg)) else: raise TypeError(f"Unknown input/attr type {type(arg)} from FunctionIR.") return tuple(schemas) @typing.runtime_checkable class OpLike(Protocol): """A protocol for objects that have an ONNX OpSchema.""" @property def name(self) -> str: ... @property def opset(self) -> Opset: ... @property def op_schema(self) -> Optional[onnx.defs.OpSchema]: ... @property def op_signature(self) -> Optional[_schemas.OpSignature]: ...
[docs] class Op(OpLike): """Represents an ONNX op instance (for example, the MatMul op from ONNX opset version 13). It belongs to a particular Opset and has a name. Attributes: opset: The Opset that this op belongs to. name: The name of the op. op_schema: The ONNX OpSchema for the op. """ def __init__( self, opset: Opset, name: str, op_schema: Optional[onnx.defs.OpSchema] = None ) -> None: self._opset = opset self._name = name self._op_schema = op_schema or opset[name] self._signature: Optional[_schemas.OpSignature] = None self._param_schemas: Optional[tuple[ParamSchema, ...]] = None if self._op_schema is None: logger.debug( "An OpSchema was not provided for Op '%s' and " "there is not one found in opset '%s'.", name, opset, ) def __call__(self, *args, **kwargs): # FIXME(after #225): Move import to the top of the file. from onnxscript import evaluator # pylint: disable=import-outside-toplevel schema = self.op_schema if schema is None: raise RuntimeError( f"Op '{self.name}' does not have an OpSchema and cannot be evaluated." ) return evaluator.default().eval(schema, args, kwargs) @property def name(self) -> str: return self._name @property def opset(self) -> Opset: return self._opset @property def op_schema(self) -> Optional[onnx.defs.OpSchema]: return self._op_schema
[docs] @deprecation.deprecated( since="0.1", removed_in="the future", instructions="check if '.op_schema' is not None instead", ) def has_schema(self) -> bool: """Returns True if this op has an OpSchema.""" return self.op_schema is not None
@property def op_signature(self) -> Optional[_schemas.OpSignature]: """Returns the signature of this op.""" if self._signature is not None: return self._signature if self.op_schema is None: return None self._signature = _schemas.OpSignature.from_op_schema(self.op_schema) return self._signature @op_signature.setter def op_signature(self, value: _schemas.OpSignature): self._signature = value
[docs] @deprecation.deprecated( since="0.1", removed_in="the future", instructions="use '.op_signature' instead", ) def param_schemas(self) -> Optional[tuple[ParamSchema, ...]]: """Returns the parameter schemas for this op, if it has one.""" if self._param_schemas is not None: return self._param_schemas op_schema = self.op_schema if op_schema is None: return None self._param_schemas = _param_schemas_from_op_schema(op_schema) return self._param_schemas
@dataclasses.dataclass(repr=False, eq=False) class OnnxClosure: """Represents a nested function used as a graph-valued attribute for an ONNX op call.""" function_ir: irbuilder.IRFunction # frame is python's stack-frame for the execution of top-level # script function (in eager-mode). It is used to get the current # value of outer-scope variables referred to inside this nested # function/GraphProto. frame: types.FrameType function: Any @dataclasses.dataclass class TypeConstraint: """Represents a type constraint for an ONNX op. Attributes: name: The name of the type constraint. allowed_types: The allowed types for the type constraint. """ name: str allowed_types: list[str] description: str = "" def as_tuple(self) -> tuple[str, list[str], str]: """Returns the type constraint as a tuple.""" return (self.name, self.allowed_types, self.description) def _op_schema_from_function_ir( function_ir: irbuilder.IRFunction, opset: Opset ) -> onnx.defs.OpSchema: """Construct an ONNX OpSchema from an IRFunction.""" # Find all distinct types in the inputs and outputs distinct_types = {arg.typeinfo for arg in function_ir.inputs}.union( {arg.typeinfo for arg in function_ir.outputs} ) # Create a mapping from type to a unique name type_to_constraint = {} for i, type_ in enumerate(distinct_types): name = f"T{i}" type_to_constraint[type_] = TypeConstraint( name=type_annotation.get_type_constraint_name(type_) or name, allowed_types=type_annotation.pytype_to_type_strings(type_), ) formal_inputs = [ onnx.defs.OpSchema.FormalParameter( arg.name, type_to_constraint[arg.typeinfo].name, param_option=( onnx.defs.OpSchema.FormalParameterOption.Optional if type_annotation.is_optional(arg.typeinfo) else onnx.defs.OpSchema.FormalParameterOption.Single ), # TODO(justinchu): Check this is_homogeneous thing is_homogeneous=True, ) for arg in function_ir.inputs ] formal_outputs = [ onnx.defs.OpSchema.FormalParameter( arg.name, type_to_constraint[arg.typeinfo].name, param_option=( onnx.defs.OpSchema.FormalParameterOption.Optional if type_annotation.is_optional(arg.typeinfo) else onnx.defs.OpSchema.FormalParameterOption.Single ), # TODO(justinchu): Check this is_homogeneous thing is_homogeneous=True, ) for arg in function_ir.outputs ] return onnx.defs.OpSchema( function_ir.name, opset.domain, since_version=opset.version, doc=function_ir.docstring, inputs=formal_inputs, outputs=formal_outputs, type_constraints=[constraint.as_tuple() for constraint in type_to_constraint.values()], attributes=[ *[ onnx.defs.OpSchema.Attribute( attr.name, type=onnx.defs.OpSchema.AttrType(attr.type), # type: ignore[call-arg] ) for attr in function_ir.attrs if not attr.has_default ], *[ onnx.defs.OpSchema.Attribute( attr.name, default_value=attr.attr_proto, ) for attr in function_ir.attrs if attr.has_default ], ], )
[docs] class OnnxFunction(Op): """Represents an ONNX op for which a function-body has been defined in onnxscript. Attributes: opset: Opset the function belongs to. name: Name of the function. function: Python function. function_ir: Python code parsed as an :class:`irbuilder.IRFunction`. source: Source code used to generate the function. kwargs: Additional properties used to construct a ModelProto. op_schema: Generated ONNX OpSchema for this op. """ def __init__( self, opset: Optional[Opset], pyfun: Callable, irfun: irbuilder.IRFunction, source: str, kwargs: dict[str, Any], ): """Constructs an OnnxFunction. Args: opset: opset the function belongs to pyfun: python function irfun: python code parsed by class :class:`onnxscript.converter.Converter` source: source code used to generate the function kwargs: additional properties used to construct a ModelProto """ opset = opset or Opset(irfun.domain, 1) super().__init__(opset, irfun.name) self.function = pyfun self.function_ir = irfun self.source = source self.kwargs = kwargs self._param_schemas: Optional[tuple[ParamSchema, ...]] = None self._op_schema: Optional[onnx.defs.OpSchema] = None # Allow the object to be inspected as a function functools.update_wrapper(self, pyfun) # Experimental fields self.traceable = False @property @deprecation.deprecated( since="0.1", removed_in="the future", instructions="use '.name' instead", ) def opname(self) -> str: # NOTE: This is a temporary alias for backward compatibility with PyTorch 2.0. # TODO: Remove this in onnxscript 0.3. return self.name @property def op_schema(self) -> Optional[onnx.defs.OpSchema]: """Construct an OpSchema from function_ir.""" if self._op_schema is not None: return self._op_schema self._op_schema = _op_schema_from_function_ir(self.function_ir, self.opset) return self._op_schema @property def op_signature(self) -> Optional[_schemas.OpSignature]: """Returns the signature of this op.""" if self._signature is not None: return self._signature if self.op_schema is None: return None self._signature = _schemas.OpSignature.from_function( self.function, domain=self.function_ir.domain, name=self.name ) return self._signature @op_signature.setter def op_signature(self, value: _schemas.OpSignature): self._signature = value def __getitem__(self, instance): """Returns a lambda to evaluate function using given evaluator instance. Usage: script_fun(X) executes the function using the default evaluator instance. script_fun[instance](X) executes the function using the given evaluator instance. """ def fun(*args, **kwargs): # FIXME(after #225): Move import to the top of the file. from onnxscript import evaluator # pylint: disable=import-outside-toplevel with evaluator.default_as(instance): return self.__call__(*args, **kwargs) return fun def __call__(self, *args, **kwargs): """Implements an eager-mode execution of an onnxscript function.""" # FIXME(after #225): Move import to the top of the file. from onnxscript import evaluator # pylint: disable=import-outside-toplevel return evaluator.default().eval_function(self, args, kwargs) def __repr__(self) -> str: return f"{self.__class__.__name__}({self.function!r})"
[docs] @deprecation.deprecated( since="0.1", removed_in="the future", instructions="use '.op_signature' instead", ) def param_schemas(self) -> tuple[ParamSchema, ...]: """Returns the parameter schemas of this function.""" if self._param_schemas is not None: return self._param_schemas # NOTE: We generate the parameter schemas from the function_ir instead # of relying on the auto generated OpSchema because we need to preserve the keyword # argument order from the Python function definition, which is lost in OpSchema. self._param_schemas = _param_schemas_from_function_ir(self.function_ir) return self._param_schemas
[docs] def to_function_proto(self) -> onnx.FunctionProto: """Converts the function into :class:`onnx.FunctionProto`.""" return self.function_ir.to_function_proto()
[docs] def to_model_proto(self, **kwargs): """Converts the function into :class:`onnx.ModelProto`.""" if self.function_ir.attrs and any( not attr.has_default for attr in self.function_ir.attrs ): raise ValueError( "A function with required attributes cannot be exported as a model." ) # Note: The function must also have monomorphic type annotation for inputs/outputs # to be converted into a valid model. Otherwise, we can still produce an ONNX # model, but it will not pass the ONNX model checker. We do not report an error # at this stage. # Merge kwargs specified in script-decorator with those specified in this call. merged_kw_args = {**self.kwargs, **kwargs} return self.function_ir.to_model_proto(**merged_kw_args)
class TracedOnnxFunction(Op): """TracedOnnxFunction. Attributes: name: Name of the op. E.g. "aten::add". func: Function. """ def __init__(self, opset: Opset, func: Callable): super().__init__(opset, func.__name__) self.func = func # Allow the object to be inspected as a function functools.update_wrapper(self, func) def __call__(self, *args, **kwargs): return self.func(*args, **kwargs) def __repr__(self): return f"{self.__class__.__name__}({self.func!r})" @property def function_ir(self) -> irbuilder.IRFunction: """Return the function_ir. This function IR contains only the signature of the function. """ src, func_ast = ast_utils.get_src_and_ast(self.func) module = inspect.getmodule(self.func) closure = inspect.getclosurevars(self.func) global_names = module.__dict__.copy() global_names.update(closure.nonlocals) converter = converter_module.Converter( opset=self._opset, global_names=global_names, source=src, ) return converter.translate_function_signature(func_ast) @property def op_schema(self) -> Optional[onnx.defs.OpSchema]: """Return the OpSchema.""" if self._op_schema is not None: return self._op_schema # FIXME(justinchuby): outputs are empty. Need to fix. self._op_schema = _op_schema_from_function_ir(self.function_ir, self._opset) return self._op_schema @property def op_signature(self) -> Optional[_schemas.OpSignature]: """Returns the signature of this op.""" if self._signature is not None: return self._signature if self.op_schema is None: return None self._signature = _schemas.OpSignature.from_function( self.func, domain="_traced", name=self.name ) return self._signature @op_signature.setter def op_signature(self, value: _schemas.OpSignature): self._signature = value @deprecation.deprecated( since="0.1", removed_in="the future", instructions="use '.op_signature' instead", ) def param_schemas(self) -> tuple[ParamSchema, ...]: """Returns the parameter schemas of this function.""" if self._param_schemas is not None: return self._param_schemas # NOTE: We generate the parameter schemas from the function_ir instead # of relying on the auto generated OpSchema because we need to preserve the keyword # argument order from the Python function definition, which is lost in OpSchema. self._param_schemas = _param_schemas_from_function_ir(self.function_ir) return self._param_schemas class SymbolValue: """Represents script-time value information about named variables used in a script. At translation-time, the (local) variables of a script, including its parameters, are bound to a SymbolValue. SymbolValues fall into the following categories: AttrRef: Function parameters of attribute-kind, also mapped to ONNX attributes Dynamic: values computed at runtime (of tensor type, for now) mapped to NodeArgs. Dynamic values include input-parameters of the script, as well intermediate values computed in the script. For example, consider the following script definition: :: @script() def ThresholdedRelu(X, alpha: float): zero = op.CastLike(0, X) return op.Where(X > alpha, X, zero) Here, `X` has a Dynamic value, `alpha` has an AttrRef value, and `zero` has a Dynamic value. Scripts may also contain references to global variables, but the translator does not associate a SymbolValue with them. The python value of global variables is used directly in the translation, and such global variables are intended to be used for limited purposes, namely: * To identify an opset * To represent constant-values, translated into ONNX constants. """ def __init__(self, info: sourceinfo.SourceInfo) -> None: if not isinstance(info, sourceinfo.SourceInfo): raise TypeError(f"info must be of type sourceinfo.SourceInfo not {type(info)!r}.") self.info = info class AttrRef(SymbolValue): def __init__( self, attr_name: str, typeinfo: _GenericAlias, info: sourceinfo.SourceInfo ) -> None: """Initializes AttrRef. Arguments: attr_name: name of the attribute-parameter typeinfo: type annotation of the attribute. op's attributes in ONNX are usually single type or list of single type. info: for debugging use. """ super().__init__(info) self.value = attr_name self.typeinfo = typeinfo if not isinstance(typeinfo, (type, _GenericAlias)): # typing._GenericAlias for List[int] and List[str], etc. raise TypeError(f"Expecting a type not f{type(typeinfo)} for typeinfo.") self.typeinfo = typeinfo class DynamicKind(IntFlag): Unknown = 0 Input = 1 Output = 2 Intermediate = 4 Loop = 8 class Dynamic(SymbolValue): def __init__( self, onnx_var: str, kind: DynamicKind, info: sourceinfo.SourceInfo, typeinfo=None ) -> None: """Initializes Dynamic. Arguments: onnx_var: the name of the ONNX variable used to represent this value kind: the DynamicKind of this variable info: source-location information for error-messages/debugging typeinfo: type-information for the value """ super().__init__(info) assert isinstance(kind, DynamicKind) self.value = onnx_var self.kind = kind self.typeinfo = typeinfo