Model Local Functions¶

A model in ONNX may contain model-local functions. When converting an onnxscript function to a ModelProto, the default behavior is to include function-definitions for all transitively called function-ops as model-local functions in the generated model (for which an onnxscript function definition has been seen). Callers can override this behavior by explicitly providing the list of FunctionProtos to be included in the generated model.

First, let us define an ONNXScript function that calls other ONNXScript functions.

import onnx

from onnxscript import FLOAT, script
from onnxscript import opset15 as op
from onnxscript.values import Opset

# A dummy opset used for model-local functions
local = Opset("local", 1)


@script(local, default_opset=op)
def diff_square(x, y):
    diff = x - y
    return diff * diff


@script(local)
def sum(z):
    return op.ReduceSum(z, keepdims=1)


@script()
def l2norm(x: FLOAT["N"], y: FLOAT["N"]) -> FLOAT[1]:  # noqa: F821
    return op.Sqrt(sum(diff_square(x, y)))
/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/onnxscript/converter.py:823: FutureWarning: 'onnxscript.values.Op.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead.
  param_schemas = callee.param_schemas()
/opt/hostedtoolcache/Python/3.10.16/x64/lib/python3.10/site-packages/onnxscript/converter.py:823: FutureWarning: 'onnxscript.values.OnnxFunction.param_schemas' is deprecated in version 0.1 and will be removed in the future. Please use '.op_signature' instead.
  param_schemas = callee.param_schemas()

Let’s see what the generated model looks like by default:

model = l2norm.to_model_proto()
print(onnx.printer.to_text(model))
<
   ir_version: 8,
   opset_import: ["local" : 1, "" : 15]
>
l2norm (float[N] x, float[N] y) => (float[1] return_val) {
   tmp = local.diff_square (x, y)
   tmp_0 = local.sum (tmp)
   return_val = Sqrt (tmp_0)
}
<
  domain: "local",
  opset_import: ["" : 15]
>
sum (z) => (return_val)
{
   return_val = ReduceSum <keepdims: int = 1> (z)
}
<
  domain: "local",
  opset_import: ["" : 15]
>
diff_square (x, y) => (return_val)
{
   diff = Sub (x, y)
   return_val = Mul (diff, diff)
}

Let’s now explicitly specify which functions to include. First, generate a model with no model-local functions:

model = l2norm.to_model_proto(functions=[])
print(onnx.printer.to_text(model))
<
   ir_version: 8,
   opset_import: ["local" : 1, "" : 15]
>
l2norm (float[N] x, float[N] y) => (float[1] return_val) {
   tmp = local.diff_square (x, y)
   tmp_0 = local.sum (tmp)
   return_val = Sqrt (tmp_0)
}

Now, generate a model with one model-local function:

model = l2norm.to_model_proto(functions=[sum])
print(onnx.printer.to_text(model))
<
   ir_version: 8,
   opset_import: ["local" : 1, "" : 15]
>
l2norm (float[N] x, float[N] y) => (float[1] return_val) {
   tmp = local.diff_square (x, y)
   tmp_0 = local.sum (tmp)
   return_val = Sqrt (tmp_0)
}
<
  domain: "local",
  opset_import: ["" : 15]
>
sum (z) => (return_val)
{
   return_val = ReduceSum <keepdims: int = 1> (z)
}